Cartoons showing the use of Laue diffraction
Matlab codes
% Program to generate 2D schematic movie of Laue method
clear; close all;
vid = VideoWriter('Laue2D.mp4','MPEG-4');
vid.Quality = 100;
vid.FrameRate = 30;
open(vid);
figure('units','pixels','position',[0 0 1920 1080],'ToolBar','none');
set(0,'defaultfigurecolor',[1 1 1]);
set(gca,'linewidth',7);
kV1 = 1/1; % Radius of Ewald sphere, here 1 AA^-1
kV2 = 1/4; % Radius of Ewald sphere, here 1 AA^-1
% Create a set of diffraction maxima with separations of 1/(nBP) AA^-1 out to
% 1 AA (1 AA^-1)
bpCol = [0.3 0.28 0.55]; % Color of Bragg peaks (if not on surface of Ewald sphere (ES))
rBP = 0.0053; % Radius of Bragg peak as plotted on ES
numBP = 14; % Number of Bragg peaks to edge of diffraction pattern at 0.5 AA^-1
% Vertices of stretched octahedral crystal
rhSize = 0.025;
v1 = [rhSize,0,0];
v2 = [0,rhSize,0];
v3 = [0,0,rhSize*1.25];
v4 = [-rhSize,0,0];
v5 = [0,-rhSize,0];
v6 = [0,0,-rhSize*1.25];
[x,y,z] = sphere; % Create 3D array to plot spheres
[a,b,c] = sphere; % Create 3D array to plot spheres
for phi = 0:0.5:179.875 % Rotate Bragg peaks around y-axis in steps of 0.5 degrees
hold off
% Plot semitransparent Ewald sphere at (-kV1, 0, 0)
[x,y,z] = sphere(70); surf(kV1*x-kV1,kV1*y,kV1*z,'FaceAlpha',0.07,'FaceColor',...
bpCol,'LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
hold on
% Plot semitransparent Ewald sphere at (-kV2, 0, 0)
[x,y,z] = sphere(70); surf(kV2*x-kV2,kV2*y,kV2*z,'FaceAlpha',0.08,'FaceColor',...
'r','LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
% Draw crystal and rotate it
f1 = fill3(v1,v2,v3,'green','LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
f2 = fill3(v4,v2,v3,'green','LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
f3 = fill3(v1,v2,v6,'green','LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
f4 = fill3(v4,v2,v6,'green','LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
rotate(f1,[0 1 0],phi,[0,0,0]);
rotate(f2,[0 1 0],phi,[0,0,0]);
rotate(f3,[0 1 0],phi,[0,0,0]);
rotate(f4,[0 1 0],phi,[0,0,0]);
% Loop through hkl space
for h = -1:1/numBP:1
for l = -1:1/numBP:1
hl = (h^2 + l^2)^0.5;
if (hl <= 1) % Only plot out Bragg peaks in reciprocal lattice
% within radius of 1 AA^-1.
hold on
LL = 1.01; % Defines limits of plotted figure
xlim([-LL LL]);
ylim([-LL LL]);
zlim([-LL LL]);
% Rotate reciprocal lattice to angle phi
% and calculate new absolute (h k l) after rotation
hnew = h*cosd(phi) + l*sind(phi);
lnew = l*cosd(phi) - h*sind(phi);
innerIneq = (kV2 + hnew)^2 + lnew^2;
outerIneq = (kV1 + hnew)^2 + lnew^2;
if (innerIneq < kV2^2) ||... % Inside small Ewald sphere
(outerIneq > kV1^2) ||... % Outside large Ewald sphere
(hnew > 0) % All detectable BPs have h <= 0
% Undetected Bragg peaks outside Ewald volume
H = surf(rBP*x+h,rBP*y,rBP*z+l,'FaceAlpha',(1.0 - hl)/1.0,...
'FaceColor',bpCol,'LineStyle','none');
rotate(H,[0 1 0],phi,[0,0,0]);
elseif (hl == 0) % (000) direct beam
H = surf(rBP*x+h,rBP*y,rBP*z+l,'FaceAlpha',(1.0 - hl)/1.0,...
'FaceColor',bpCol,'LineStyle','none');
rotate(H,[0 1 0],phi,[0,0,0]);
else % Detected Bragg peaks lying in Ewald volume
H = surf(2*rBP*x+h,2*rBP*y,2*rBP*z+l,'FaceAlpha',...
((1.0 - (hl)^2)/1.0),...
'FaceColor','r','LineStyle','none','FaceLighting','Flat');
rotate(H,[0 1 0],phi,[0,0,0]);
end % End of finding out if BP on ES
end % End of selecting only hl values within radius of 0.5 r.l.u.
end % End of l-loop
end % End of h-loop
% End of drawing diffraction maxima
% Cross at ES origin and dotted axis
line1 = plot3([-1 -1],[-0.05 0.05],[0 0],'color','red', 'LineWidth', 1.4);
line2 = plot3([-1 -1],[0 0],[-0.05 0.05],'color','red', 'LineWidth', 1.4);
line3 = plot3([-1.05 1.05],[0 0],[0 0],'color','red', 'LineWidth', 1.4, 'LineStyle','-.');
set(gca, 'Projection','perspective');
set(gca,'View',[0,0]);
lp = [-0.7 -0.5 0.5];
light('Position',lp,'Style','infinite');
axis equal
axis off
LL = 1.01;
xlim([-LL LL]);
ylim([-LL LL]);
zlim([-LL LL]);
% Store the frame
frame = getframe(gcf);
writeVideo(vid,frame);
end % End of phi-rotation loop
% Output the movie as an mpg file
close(vid);
% Program to generate 3D schematic movie of Laue diffraction while rotating
% the crystal. The "diffracting volume" or "Ewald volume" is defined by two
% limits to the k-vector. This volume is hence bounded by a large Ewald
% sphere of radius kV1 and within this a small Ewald sphere with radius
% kV2; they touch one another at (0,0,0). As default, these are set to 1
% and 0.25 reciprocal Angstroms (12.4 keV and 3.1 keV, respectively).
% Parameter list
% ______________
% kV1 = k-vector of outer surface of Ewald volume in units of 2pi reciprocal Angstroms
% kV2 = k-vector of inner surface of Ewald volume in units of 2pi reciprocal Angstroms
% rBP = radius of spheres representing Bragg peaks in units of 2pi reciprocal Angstroms
% numBP = +/- range of BPs (max # peaks in a row = 2*numBP+1)
% bpExtentRad = extent (radius) of sphere to which Bragg peaks are plotted. Also in units of 2pi reciprocal Angstroms
% phi = rotation angle around y-axis in degrees
% h, k, l = orthogonal reciprocal-space coordinates
% hnew, knew, lnew = angularly transformed positions of (h, k, l)
% thnow = absolute Bragg angle associated with current (hnew, knew, lnew) Bragg peak
% kVnow = k-vector associated with current (hnew, knew, lnew) Bragg peak in units of 2pi reciprocal Angstroms
clear; close all;
figure('units','pixels','position',[0 0 1920 1080],'ToolBar','none');
vid = VideoWriter('Laue.mp4','MPEG-4');
vid.Quality = 100;
vid.FrameRate = 30;
open(vid);
set(0,'defaultfigurecolor',[1 1 1]);
set(gca,'linewidth',7);
% Create semitransparent Ewald sphere centered around (-kV,0,0) with 1
% reciprocal Angstrom radius
kV1 = 1/1; % Radius of outer surface of Ewald volume, here 1 AA^-1
kV2 = 1/2.5; % Radius of inner surface of Ewald volume, here 0.4 AA^-1
% Create a set of diffraction maxima out to bpExtentRad reciprocal Angstroms
bpCol = [0.3 0.28 0.55]; % Color of Bragg peaks (if not on surface of Ewald sphere (ES))
lyel = [1 1 0.64]; % Color of Bragg peaks on detector
rBP = 0.005; % Radius of Bragg peak
numBP = 10; % From -numBP to + numBP within range of +/- bpExtentRad
bpExtentRad = 0.4; % Radial extent to which Bragg peaks are shown
stepSize = bpExtentRad/numBP; % Separation of adjacent Bragg peaks in reciprocal space
% Vertices of crystal drawn around (0,0,0) point
rhSize = 0.05;
X1 = [0 0 rhSize]; % x-coordinates of vertices of first face of octahedron
Y1 = [0,-rhSize,0]; % y-coordinates of vertices of first face of octahedron
Z1 = [rhSize,0 0]; % z-coordinates of vertices of first face of octahedron
X2 = [0 0 rhSize]; % etc, etc...
Y2 = [0,rhSize,0];
Z2 = [rhSize,0 0];
X3 = [0 0 -rhSize];
Y3 = [0,-rhSize,0];
Z3 = [rhSize,0 0];
X4 = [0 0 -rhSize];
Y4 = [0,rhSize,0];
Z4 = [rhSize,0 0];
X5 = [0 0 rhSize];
Y5 = [0,-rhSize,0];
Z5 = [-rhSize,0 0];
X6 = [0 0 rhSize];
Y6 = [0,rhSize,0];
Z6 = [-rhSize,0 0];
X7 = [0 0 -rhSize];
Y7 = [0,-rhSize,0];
Z7 = [-rhSize,0 0];
X8 = [0 0 -rhSize];
Y8 = [0,rhSize,0];
Z8 = [-rhSize,0 0];
detPos = 0.8; % Position of detector face in reciprocal space
[x,y,z] = sphere; % Used for Ewald sphere
[a,b,c] = sphere; % Used for BPs on detector
[Z,Y,X] = cylinder(1,180); % Side walls of detector
detector = zeros(3,101);
th = 0:pi/50:2*pi;
detector(1,:) = zeros(1,101) + detPos; % x-coordinates of detector body
detector(2,:) = 1*cos(th); % y-coordinates
detector(3,:) = 1*sin(th); % z-coordinates
phiStep = 0.5;
for phi = 0:phiStep:89.999 % Rotate Bragg peaks around y-axis in phiStep-deg steps
phi % Monitor progress of program
laueInt = NaN((2*numBP+1)^3,5); % Array to plot as scatter3 the BPs within the Ewald volume
undetInt = NaN((2*numBP+1)^3,5); % Array to plot as scatter3 the BPs outside the Ewald volume
hold off
% Draw outer spherical surface of Ewald volume centered at x = -kV1 and
% radius kV1
[x,y,z] = sphere(70); surf(kV1*x-kV1,kV1*y,kV1*z,'FaceAlpha',0.125,'FaceColor',...
'b','LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
hold on
% Draw inner spherical surface of Ewald volume centered at x = -kV2 and
% radius kV2
[x,y,z] = sphere(70); surf(kV2*x-kV2,kV2*y,kV2*z,'FaceAlpha',0.125,'FaceColor',...
'r','LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
% Draw octahedral crystal
f1 = fill3(X1,Y1,Z1,'green','LineStyle','none','FaceLighting','flat','DiffuseStrength',1);
f2 = fill3(X2,Y2,Z2,'green','LineStyle','none','FaceLighting','flat','DiffuseStrength',1);
f3 = fill3(X3,Y3,Z3,'green','LineStyle','none','FaceLighting','flat','DiffuseStrength',1);
f4 = fill3(X4,Y4,Z4,'green','LineStyle','none','FaceLighting','flat','DiffuseStrength',1);
f5 = fill3(X5,Y5,Z5,'green','LineStyle','none','FaceLighting','flat','DiffuseStrength',1);
f6 = fill3(X6,Y6,Z6,'green','LineStyle','none','FaceLighting','flat','DiffuseStrength',1);
f7 = fill3(X7,Y7,Z7,'green','LineStyle','none','FaceLighting','flat','DiffuseStrength',1);
f8 = fill3(X8,Y8,Z8,'green','LineStyle','none','FaceLighting','flat','DiffuseStrength',1);
rotate(f1,[0 1 0],phi,[0,0,0]);
rotate(f2,[0 1 0],phi,[0,0,0]);
rotate(f3,[0 1 0],phi,[0,0,0]);
rotate(f4,[0 1 0],phi,[0,0,0]);
rotate(f5,[0 1 0],phi,[0,0,0]);
rotate(f6,[0 1 0],phi,[0,0,0]);
rotate(f7,[0 1 0],phi,[0,0,0]);
rotate(f8,[0 1 0],phi,[0,0,0]);
hklstep = (-bpExtentRad:stepSize:bpExtentRad);
ii = 0;
for h = hklstep
for k = hklstep
for l = hklstep
ii = ii+1;
hkl = (h^2 + k^2 + l^2)^0.5;
if (hkl <= bpExtentRad) % Plot out Bragg peaks within radius of bpExtentRad r.l.u.
hold on
LL = 1.05;
xlim([-LL LL]);
ylim([-LL LL]);
zlim([-LL LL]);
% Calculate new absolute h k l after rotation
hnew = h*cosd(phi) + l*sind(phi);
knew = k;
lnew = l*cosd(phi) - h*sind(phi);
% innerIneq and outerIneq define limits of BPs that are
% detected
innerIneq = (kV2 + hnew)^2 + knew^2 + lnew^2;
outerIneq = (kV1 + hnew)^2 + knew^2 + lnew^2;
if (innerIneq < kV2^2) ||... % Inside small Ewald sphere
(outerIneq > kV1^2) ||... % Outside large Ewald sphere
(hnew > 0) % All detectable BPs have h <= 0
% Undetected Bragg peaks outside Ewald volume
undetInt(ii,1) = hnew;
undetInt(ii,2) = knew;
undetInt(ii,3) = lnew;
else
% Detected Bragg peaks inside Ewald volume
laueInt(ii,1) = hnew;
laueInt(ii,2) = knew;
laueInt(ii,3) = lnew;
% Determine size of present k-vector
thnow = atan2(abs(hnew),(knew^2 + lnew^2)^0.5); % theta for this BP
kVnow = abs(hkl/(2*sin(thnow))); % Present k-vector for this BP
% Plot Bragg peaks detected on detector
apos = detPos - 0.01;
bpos = knew * (kVnow+detPos)/(kVnow-abs(hnew));
cpos = lnew * (kVnow+detPos)/(kVnow-abs(hnew));
BPpos = (bpos^2 + cpos^2)^0.5; % Radius of position of BP on detector
if (BPpos < 1.0) % Plot BPs on detector face
detBPsize = 2*((kV1 - kVnow)/kV1)*rBP;
BP = surf(0.02*rBP*a+apos,detBPsize*b+bpos,detBPsize*c+cpos,...
'FaceAlpha',1, ...
'FaceColor',lyel,'LineStyle','none');
end % End of plotting BP signal on detector
end % End of finding out if BP in Ewald Volume
end % End of selecting only hkl values within radius of bpExtentRad
end % End of l-loop
end % End of k-loop
end % End of h-loop
% End of drawing diffraction maxima
scatter3(laueInt(:,1),laueInt(:,2),laueInt(:,3),3.0,'r',...
'MarkerFaceColor','Flat','MarkerEdgeColor','r');
scatter3(undetInt(:,1),undetInt(:,2),undetInt(:,3),3.0,'b',...
'MarkerFaceColor','Flat','MarkerEdgeColor','b');
% Side wall of detector
surf(detPos+X/5,Y*1.05,Z*1.05,'FaceAlpha',1,'FaceColor',[0.1 0.1 0.1],...
'LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
% Detector face
fill3(detector(1,:),1.05*detector(2,:),1.05*detector(3,:),[0 0 0]);
fill3(detector(1,:)-0.005,detector(2,:),detector(3,:),[0.2 0.1 0.1]);
% Side wall of beamstop
surf(detPos-0.1+X/12.5,0.03*Y,0.03*Z,'FaceAlpha',1,'FaceColor',[0.2 0.2 0.2],...
'LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
% Beamstop face
fill3(detector(1,:)-0.1,0.03*detector(2,:),0.03*detector(3,:),[0.4 0.4 0.4],...
'LineStyle','none');
% Cross at outer ES origin and dotted axis
line1 = plot3([-1 -1],[-0.05 0.05],[0 0],'color','red', 'LineWidth', 1.4);
line2 = plot3([-1 -1],[0 0],[-0.05 0.05],'color','red', 'LineWidth', 1.4);
line3 = plot3([-1.05 detPos-0.1],[0 0],[0 0],'color','red', 'LineWidth', 1.4, 'LineStyle','-.');
set(gca, 'Projection','perspective');
lp = [-0.7 -0.5 0.5];
light('Position',lp,'Style','infinite');
set(gca,'View',[-40,20]);
axis equal
axis off
LL = 1.05*kV1;
xlim([-LL LL]);
ylim([-LL LL]);
zlim([-LL LL]);
% Store the frame
frame = getframe(gcf);
writeVideo(vid,frame);
end % End of phi-rotation loop
% Output the movie as an mpg file
close(vid);
% Program to generate 2D schematic movie of Laue method with detectable
% Bragg peaks color coded according to the photon energy to which they
% correspond. After the first 180-degree rotation, a high-pass energy
% filter is applied in the detector that varies its cut-off energy from that
% of the inner Ewald sphere to that of the outer sphere over the next 180
% degrees, causing the Bragg peaks within the Ewald volume to slowly
% vanish as the cutoff energy exceeds their photon energy. This is an
% important feature of modern detectors, enabling the "overlap problem"
% associated with Laue diffraction to be overcome.
%
clear; close all;
vid = VideoWriter('Laue2DcolorCoded4energy.mp4','MPEG-4');
vid.Quality = 100;
vid.FrameRate = 30;
open(vid);
figure('units','pixels','position',[0 0 1920 1080],'ToolBar','none');
set(0,'defaultfigurecolor',[1 1 1]);
set(gca,'linewidth',7);
kV1 = 1/1; % Radius of Ewald sphere, here 1 AA^-1
kV2 = 1/4; % Radius of Ewald sphere, here 1 AA^-1
% Create a set of diffraction maxima with separations of 1/(nBP) AA^-1 out to
% 1 AA (1 AA^-1)
bpCol = [0.3 0.28 0.55]; % Color of Bragg peaks (if not on surface of Ewald sphere (ES))
rBP = 0.0053; % Radius of Bragg peak as plotted on ES
numBP = 14; % Number of Bragg peaks to edge of diffraction pattern at 0.5 AA^-1
rhSize = 0.04;
% red - yellow - green - blue - violet
rgb = customcolormap([0 0.25 0.5 0.75 1], {'#ff0000','#ffff00','#00ff00','#0000ff','#7f00ff'});
fliprgb = flip(rgb);
colormap(fliprgb);
[x,y,z] = sphere; % Create 3D array to plot spheres
[a,b,c] = sphere; % Create 3D array to plot spheres
for phi = 0:0.5:359.875 % Rotate Bragg peaks around y-axis in steps of 0.5 degrees
hold off
% Plot semitransparent Ewald sphere at (-kV1, 0, 0)
[x,y,z] = sphere(70); surf(kV1*x-kV1,kV1*y,kV1*z,'FaceAlpha',0.07,'FaceColor',...
[0.5 0 1],'LineStyle','none','FaceLighting','gouraud','DiffuseStrength',1);
hold on
% Plot semitransparent Ewald sphere at (-kV2, 0, 0)
[x,y,z] = sphere(70); surf(kV2*x-kV2,kV2*y,kV2*z,'FaceAlpha',0.08,'FaceColor',...
'r','LineStyle','none','FaceLighting','flat','DiffuseStrength',1);
% Draw crystal and rotate it
[V,F] = platonic_solid(3,rhSize); % Octahedron, size = 1
ps = patch('Faces',F,'Vertices',V,'FaceColor','g','FaceAlpha',1, ...
'EdgeColor','none','FaceLighting','flat','DiffuseStrength',1);
direction = [0 1 0];
rotate(ps,direction,phi,[0 0 0])
% Loop through hkl space
for h = -1:1/numBP:1
for l = -1:1/numBP:1
hl = (h^2 + l^2)^0.5;
if (hl <= 1) % Only plot out Bragg peaks in reciprocal lattice
% within radius of 1 AA^-1.
hold on
LL = 1.01; % Defines limits of plotted figure
xlim([-LL LL]);
ylim([-LL LL]);
zlim([-LL LL]);
% Rotate reciprocal lattice to angle phi
% and calculate new absolute (h k l) after rotation
hnew = h*cosd(phi) + l*sind(phi);
lnew = l*cosd(phi) - h*sind(phi);
%hl = (hnew^2 + lnew^2)^0.5;
innerIneq = (kV2 + hnew)^2 + lnew^2;
outerIneq = (kV1 + hnew)^2 + lnew^2;
if (innerIneq < kV2^2) ||... % Inside small Ewald sphere
(outerIneq > kV1^2) ||... % Outside large Ewald sphere
(hnew > 0) % All detectable BPs have h <= 0
% Undetected Bragg peaks outside Ewald volume
H = surf(rBP*x+h,rBP*y,rBP*z+l,'FaceAlpha',(1.0 - hl)/1.0,...
'FaceColor',bpCol,'LineStyle','none');
rotate(H,[0 1 0],phi,[0,0,0]);
elseif (hl == 0) % (000) direct beam
H = surf(rBP*x+h,rBP*y,rBP*z+l,'FaceAlpha',(1.0 - hl)/1.0,...
'FaceColor',bpCol,'LineStyle','none');
rotate(H,[0 1 0],phi,[0,0,0]);
else % Detected Bragg peaks lying in Ewald volume
% Determine size of present k-vector
thnow = atan2(abs(hnew),abs(lnew)); % theta for this BP
kVnow = abs(hl/(2*sin(thnow))); % Present k-vector for this BP
colorIndex = round(256*(kVnow-kV2)/(kV1-kV2))+1;
if (colorIndex==257)
colorIndex = 256;
end
if (phi>=180) % Apply high-pass filter that varies from
% energy corresponding to kV2 to that
% corresponding to kV1 over the next 180
% degrees
kVcutoff = (kV2 + (phi-180)*(kV1-kV2)/180);
if (kVnow<=kVcutoff)
BPalpha = 0; % BP disappears!
else
BPalpha = ((1.0 - (hl)^2)/1.0);
end
else
BPalpha = ((1.0 - (hl)^2)/1.0);
kVcutoff = kV2;
end
H = surf(2*rBP*x+h,2*rBP*y,2*rBP*z+l,'FaceAlpha',...
BPalpha,...
'FaceColor',fliprgb(colorIndex,:),'LineStyle','none','FaceLighting','Flat');
rotate(H,[0 1 0],phi,[0,0,0]);
end % End of finding out if BP on ES
end % End of selecting only hl values within radius of 0.5 r.l.u.
end % End of l-loop
end % End of h-loop
% End of drawing diffraction maxima
% Cross at ES origin and dotted axis
line1 = plot3([-kV2 -kV2],[0 0],[-0.025 0.025],'color','red', 'LineWidth', 1.76);
line2 = plot3([-kV1 -kV1],[0 0],[-0.025 0.025],'color','red', 'LineWidth', 1.76);
line3 = plot3([-kV1-0.025 kV1+0.025],[0 0],[0 0],'color','red', 'LineWidth', 1.76, 'LineStyle','-.');
% Draw dot-dashed circle corresponding to Ewald sphere at cut-off
% energy
kVcutoffPhi = 0:pi/90:2*pi;
if (phi>=180)
%kVcutoff = (kV2 + (phi-180)*(kV1-kV2)/180);
colorIndex2 = round(256*(kVcutoff-kV2)/(kV1-kV2))+1;
if (colorIndex2==257)
colorIndex2 = 256;
end
kVcutoffCoords(1,:) = kVcutoff*sin(kVcutoffPhi)-kVcutoff;
kVcutoffCoords(2,:) = 0.0*sin(kVcutoffPhi);
kVcutoffCoords(3,:) = kVcutoff*cos(kVcutoffPhi);
plot3(kVcutoffCoords(1,:),kVcutoffCoords(2,:),kVcutoffCoords(3,:), ...
'color',fliprgb(colorIndex2,:), 'LineWidth', 1.76, 'LineStyle','-.');
end
cbar = colorbar;
set(cbar,'position',[.2 .23 .01 .2]); % Size and position of colorbar
cbar.Color = [0 0 0];
caxis([kV2 kV1])
set(cbar,'Ticks',[kV2,kV1],...
'TickLabels',{'h\nu_1','h\nu_2'},'FontSize',16);
set(gca, 'Projection','perspective');
set(gca,'View',[0,0]);
lp = [-0.7 -0.5 0.5];
light('Position',lp,'Style','infinite');
axis equal
axis off
LL = 1.01;
xlim([-LL LL]);
ylim([-LL LL]);
zlim([-LL LL]);
% Store the frame
frame = getframe(gcf);
writeVideo(vid,frame);
end % End of phi-rotation loop
% Output the movie as an mpg file
close(vid);